VF_divVVD_divVVE_divV
VFs_divVVDs_divVVEs_divV
VFx_divVVDx_divVVEx_divV
VCF_divVVCD_divVVCE_divV
VCF_divReVVCD_divReVVCE_divReV
VCFx_divVVCDx_divVVCEx_divV
VCFx_divReVVCDx_divReVVCEx_divReV
VPF_divVVPD_divVVPE_divV
VPF_divReVVPD_divReVVPE_divReV
VI_divVVBI_divVVSI_divVVLI_divVVQI_divV 
VU_divVVUB_divVVUS_divVVUL_divVVUQ_divVVUI_divV
FunctionDivide two vectors
Syntax C/C++#include <VFmath.h>
void VF_divV( fVector Z, fVector X, fVector Y, ui size );
void VFs_divV( fVector Z, fVector X, fVector Y, ui size, float C );
void VFx_divV( fVector Z, fVector X, fVector Y, ui size, float A, float B );
void VCF_divV( cfVector Z, cfVector X, cfVector Y, ui size );
void VCF_divReV( cfVector Z, cfVector X, fVector Y, ui size );
void VCFx_divV( cfVector Z, cfVector X, cfVector Y, ui size, fComplex A, fComplex B );
void VCFx_divReV( cfVector Z, cfVector X, fVector Y, ui size, fComplex A, fComplex B );
C++ VecObj#include <OptiVec.h>
void vector<T>::divV( const vector<T>& X, const vector<T>& Y );
void vector<T>::s_divV( const vector<T>& X, const vector<T>& Y, const T& C );
void vector<T>::x_divV( const vector<T>& X, const vector<T>& Y, const T& A, const T& B );
void vector<complex<T>>::divV( const vector<complex<T>>& X, const vector<complex<T>>& Y );
void vector<complex<T>>::divReV( const vector<complex<T>>& X, const vector<T>& Y );
void vector<complex<T>>::x_divV( const vector<complex<T>>& X, const vector<complex<T>>& Y, complex<T> A, complex<T> B );
void vector<complex<T>>::x_divReV( const vector<complex<T>>& X, const vector<T>& Y, complex<T> A, complex<T> B );
Pascal/Delphiuses VFmath;
procedure VF_divV( Z, X, Y:fVector; size:UIntSize );
procedure VFs_divV( Z, X, Y:fVector; size:UIntSize; C:Single );
procedure VFx_divV( Z, X, Y:fVector; size:UIntSize; A, B:Single );
procedure VCF_divV( Z, X, Y:cfVector; size:UIntSize );
procedure VCF_divReV( Z, X:cfVector; Y:fVector; size:UIntSize );
procedure VCFx_divV( Z, X, Y:cfVector; size:UIntSize; A, B:fComplex );
procedure VCFx_divrReV( Z, X:cfVector; Y:fVector; size:UIntSize; A, B:fComplex );
CUDA function C/C++#include <cudaVFmath.h>
#include <cudaVCFmath.h>
int cudaVF_divV( fVector d_Z, fVector d_X, fVector d_Y,ui size );
int cudaVFs_divV( fVector d_Z, fVector d_X, fVector d_Y, ui size, float C );
int cusdVFs_divV( fVector d_Z, fVector d_X, fVector d_Y, ui size, float *d_C );
int cudaVFx_divV( fVector d_Z, fVector d_X, fVector d_Y, ui size, float A, float B );
int cusdVFx_divV( fVector d_Z, fVector d_X, fVector d_Y, ui size, float *d_A, float *d_B );
int cudaVCF_divReV( cfVector d_Z, cfVector d_X, fVector d_Y, ui size );
int cudaVCFx_divReV( cfVector d_Z, cfVector d_X, fVector d_Y, ui size, fComplex A, fComplex B );
int cusdVCFx_divReV( cfVector d_Z, cfVector d_X, fVector d_Y, ui size, fComplex *d_A, fComplex *d_B );
void VFcu_divV( fVector h_Z, fVector h_X, fVector h_Y,ui size );
void VFscu_divV( fVector h_Z, fVector h_X, fVector h_Y, ui size, float C );
void VFxcu_divV( fVector h_Z, fVector h_X, fVector h_Y, ui size, float A, float B );
void VCFcu_divReV( cfVector h_Z, cfVector h_X, fVector h_Y, ui size );
void VCFxcu_divV( cfVector h_Z, cfVector h_X, cfVector h_Y, ui size, fComplex A, fComplex B );
void VCFxcu_divReV( cfVector h_Z, cfVector h_X, fVector h_Y, ui size, fComplex A, fComplex B );
CUDA function Pascal/Delphiuses VFmath, VCFmath;
function cudaVF_divV( d_Z, d_X, d_Y:fVector; size:UIntSize ): IntBool;
function cudaVFs_divV( d_Z, d_X, d_Y:fVector; size:UIntSize; C:Single ): IntBool;
function cusdVFs_divV( d_Z, d_X, d_Y:fVector; size:UIntSize; d_C:PSingle ): IntBool;
function cudaVFx_divV( d_Z, d_X, d_Y:fVector; size:UIntSize; A, B:Single ): IntBool;
function cusdVFx_divV( d_Z, d_X, d_Y:fVector; size:UIntSize; d_A, d_B:PSingle ): IntBool;
function cudaVCF_divReV( d_Z, d_X:cfVector; d_Y:fVector; size:UIntSize ): IntBool;
function cudaVCFx_divReV( d_Z, d_X:cfVector; d_Y:fVector; size:UIntSize; A, B:fComplex ): IntBool;
function cusdVCFx_divReV( d_Z, d_X:cfVector; d_Y:fVector; size:UIntSize; d_A, d_B:PfComplex ): IntBool;
procedure VFcu_divV( h_Z, h_X, h_Y:fVector; size:UIntSize );
procedure VFscu_divV( h_Z, h_X, h_Y:fVector; size:UIntSize; C:Single );
procedure VFxcu_divV( h_Z, h_X, h_Y:fVector; size:UIntSize; A, B:Single );
procedure VCFcu_divReV( h_Z, h_X:cfVector; h_Y:fVector; size:UIntSize );
procedure VCFxcu_divReV( h_Z, h_X:cfVector; h_Y:fVector; size:UIntSize; A, B:fComplex );
Descriptionnormal versions: Zi = Xi / Yi
scaled versions: Zi = C * (Xi / Yi)
expanded versions: Zi = (A*Xi+B) / Yi
The complex floating-point versions exist in two variants: in the first variant (e.g., VCF_divV,   VCFx_divV), X, Y, and Z are all complex; in the second variant, Y is real-valued (e.g., VCF_divReV - "divide by a real vector").
Error handlingnone
Return valuenone
See alsoVF_divC,   VF_divVI,   VF_addV,   VF_mulV,   VF_modV,   VF_visV,   VF_redV

VectorLib Table of Contents  OptiVec home