VF_divVVD_divVVE_divV
VFs_divVVDs_divVVEs_divV
VFx_divVVDx_divVVEx_divV
VCF_divVVCD_divVVCE_divV
VCF_divReVVCD_divReVVCE_divReV
VCFx_divVVCDx_divVVCEx_divV
VCFx_divReVVCDx_divReVVCEx_divReV
VPF_divVVPD_divVVPE_divV
VPF_divReVVPD_divReVVPE_divReV
VI_divVVBI_divVVSI_divVVLI_divVVQI_divV
VU_divVVUB_divVVUS_divVVUL_divVVUI_divV
FunctionDivide two vectors
Syntax C/C++#include <VFmath.h>
void VF_divV( fVector Z, fVector X, fVector Y, ui size );
void VFs_divV( fVector Z, fVector X, fVector Y, ui size, float C );
void VFx_divV( fVector Z, fVector X, fVector Y, ui size, float A, float B );
void VCF_divV( cfVector Z, cfVector X, cfVector Y, ui size );
void VCF_divReV( cfVector Z, cfVector X, fVector Y, ui size );
void VCFx_divV( cfVector Z, cfVector X, cfVector Y, ui size, fComplex A, fComplex B );
void VCFx_divReV( cfVector Z, cfVector X, fVector Y, ui size, fComplex A, fComplex B );
C++ VecObj#include <OptiVec.h>
void vector<T>::divV( const vector<T>& X, const vector<T>& Y );
void vector<T>::s_divV( const vector<T>& X, const vector<T>& Y, const T& C );
void vector<T>::x_divV( const vector<T>& X, const vector<T>& Y, const T& A, const T& B );
void vector<complex<T>>::divV( const vector<complex<T>>& X, const vector<complex<T>>& Y );
void vector<complex<T>>::divReV( const vector<complex<T>>& X, const vector<T>& Y );
void vector<complex<T>>::x_divV( const vector<complex<T>>& X, const vector<complex<T>>& Y, complex<T> A, complex<T> B );
void vector<complex<T>>::x_divReV( const vector<complex<T>>& X, const vector<T>& Y, complex<T> A, complex<T> B );
Pascal/Delphiuses VFmath;
procedure VF_divV( Z, X, Y:fVector; size:UIntSize );
procedure VFs_divV( Z, X, Y:fVector; size:UIntSize; C:Single );
procedure VFx_divV( Z, X, Y:fVector; size:UIntSize; A, B:Single );
procedure VCF_divV( Z, X, Y:cfVector; size:UIntSize );
procedure VCF_divReV( Z, X:cfVector; Y:fVector; size:UIntSize );
procedure VCFx_divV( Z, X, Y:cfVector; size:UIntSize; A, B:fComplex );
procedure VCFx_divrReV( Z, X:cfVector; Y:fVector; size:UIntSize; A, B:fComplex );
Descriptionnormal versions: Zi = Xi / Yi
scaled versions: Zi = C * (Xi / Yi)
expanded versions: Zi = (A*Xi+B) / Yi
The complex floating-point versions exist in two variants: in the first variant (e.g., VCF_divV,   VCFx_divV), X, Y, and Z are all complex; in the second variant, Y is real-valued (e.g., VCF_divReV - "divide by a real vector").
Error handlingnone
Return valuenone
See alsoVF_divC,   VF_divVI,   VF_addV,   VF_mulV,   VF_modV,   VF_visV,   VF_redV

VectorLib Table of Contents  OptiVec home