VF_addVVD_addVVE_addV
VCF_addVVCD_addVVCE_addV
VCF_addReVVCD_addReVVCE_addReV
VFs_addVVDs_addVVEs_addV
VFx_addVVDx_addVVEx_addV
VCFx_addVVCDx_addVVCEx_addV
VCFx_addReVVCDx_addReVVCEx_addReV
VI_addVVBI_addVVSI_addVVLI_addVVQI_addV
VU_addVVUB_addVVUS_addVVUL_addVVUI_addV
FunctionAdd two vectors
Syntax C/C++#include <VFmath.h>
void VF_addV( fVector Z, fVector X, fVector Y,ui size );
void VFs_addV( fVector Z, fVector X, fVector Y, ui size, float C );
void VFx_addV( fVector Z, fVector X, fVector Y, ui size, float A, float B );

    (similarly VD_,   VDx_,   VE_,   VEx_,   VI_, etc.)
void VCF_addV( cfVector Z, cfVector X, cfVector Y, ui size );
void VCF_addReV( cfVector Z, cfVector X, fVector Y, ui size );
void VCFx_addV( cfVector Z, cfVector X, cfVector Y, ui size, fComplex A, fComplex B );
void VCFx_addReV( cfVector Z, cfVector X, fVector Y, ui size, fComplex A, fComplex B );

    (similarly VCD_,   VCDx_,   VCE_,   VCEx_)
C++ VecObj#include <OptiVec.h>
void vector<T>::addV( const vector<T>& X, const vector<T>& Y );
void vector<T>::s_addV( const vector<T>& X, const vector<T>& Y, const T& C );
void vector<T>::x_addV( const vector<T>& X, const vector<T>& Y, const T& A, const T& B );
void vector<complex<T>>::addV( const vector<complex<T>>& X, const vector<complex<T>>& Y );
void vector<complex<T>>::addReV( const vector<complex<T>>& X, const vector<T>& Y );
void vector<complex<T>>::x_addV( const vector<complex<T>>& X, const vector<complex<T>>& Y, complex<T> A, complex<T> B );
void vector<complex<T>>::x_addReV( const vector<complex<T>>& X, const vector<T>& Y, complex<T> A, complex<T> B );
Pascal/Delphiuses VFmath;
procedure VF_addV( Z, X, Y:fVector; size:UIntSize );
procedure VFx_addV( Z, X, Y:fVector; size:UIntSize; A, B:Single );

    (similarly VD_,   VDx_,   VE_,   VEx_,   VI_, etc.)
procedure VCF_addV( Z, X, Y:cfVector; size:UIntSize );
procedure VCF_addReV( Z, X:cfVector; Y:fVector; size:UIntSize );
procedure VCFx_addV( Z, X, Y:cfVector; size:UIntSize; A, B:fComplex );
procedure VCFx_addReV( Z, X:cfVector; Y:fVector; size:UIntSize; A, B:fComplex );

    (similarly VCD_, VCDx_, VCE_,   VCEx_)
Descriptionnormal versions: Zi = Xi + Yi
scaled versions: Zi = C * (Xi + Yi)
expanded versions: Zi = (A * Xi + B) + Yi
The complex floating-point versions exist in two variants. In the first variant (e.g.VCF_addV,   VCFx_addV), X, Y, and Z are all complex; in the second variant, Y is real-valued (e.g., VCF_addReV - "add a real vector").
Error handlingfloating-point versions: none;
integer versions: see chapter 5.2.
Return valuenone
See alsoVF_addC,   VF_add2V,   VF_subV,   VF_mulV,   VF_divV,   VF_accV,   VF_addVI

VectorLib Table of Contents  OptiVec home