VF_divrVVD_divrVVE_divrV
VCF_divrVVCD_divrVVCE_divrV
VCF_divrReVVCD_divrReVVCE_divrReV
VFs_divrVVDs_divrVVEs_divrV
VFx_divrVVDx_divrVVEx_divrV
VCFx_divrVVCDx_divrVVCEx_divrV
VCFx_divrReVVCDx_divrReVVCEx_divrReV
VPF_divrVVPD_divrVVPE_divrV
VPF_divrReVVPD_divrReVVPE_divrReV
VI_divrVVBI_divrVVSI_divrVVLI_divrVVQI_divrV 
VU_divrVVUB_divrVVUS_divrVVUL_divrVVUQ_divrVVUI_divrV
FunctionDivide two vectors in reverse order
Syntax C/C++#include <VFmath.h>
void VF_divrV( fVector Z, fVector X, fVector Y, ui size );
void VFx_divrV( fVector Z, fVector X, fVector Y, ui size, float A, float B );
void VCF_divrV( cfVector Z, cfVector X, cfVector Y, ui size );
void VCF_divrReV( cfVector Z, cfVector X, fVector Y, ui size );
void VCFx_divrV( cfVector Z, cfVector X, cfVector Y, ui size, fComplex A, fComplex B );
void VCFx_divrReV( cfVector Z, cfVector X, fVector Y, ui size, fComplex A, fComplex B );
C++ VecObj#include <OptiVec.h>
void vector<T>::divrV( const vector<T>& X, const vector<T>& Y );
void vector<T>::x_divrV( const vector<T>& X, const vector<T>& Y, const T& A, const T& B );
void vector<complex<T>>::divrV( const vector<complex<T>>& X, const vector<complex<T>>& Y );
void vector<complex<T>>::divrReV( const vector<complex<T>>& X, const vector<T>& Y );
void vector<complex<T>>::x_divrV( const vector<complex<T>>& X, const vector<complex<T>>& Y, complex<T> A, complex<T> B );
void vector<complex<T>>::x_divrReV( const vector<complex<T>>& X, const vector<T>& Y, complex<T> A, complex<T> B );
Pascal/Delphiuses VFmath;
procedure VF_divrV( Z, X, Y:fVector; size:UIntSize );
procedure VFx_divrV( Z, X, Y:fVector; size:UIntSize; A, B:Single );
procedure VCF_divrV( Z, X, Y:cfVector; size:UIntSize );
procedure VCF_divrReV( Z, X:cfVector; Y:fVector; size:UIntSize );
procedure VCFx_divrV( Z, X, Y:cfVector; size:UIntSize; A, B:fComplex );
procedure VCFx_divrReV( Z, X:cfVector; Y:fVector; size:UIntSize; A, B:fComplex );
CUDA function C/C++#include <cudaVFmath.h>
#include <cudaVCFmath.h>
int cudaVF_divrV( fVector d_Z, fVector d_X, fVector d_Y,ui size );
int cudaVFs_divrV( fVector d_Z, fVector d_X, fVector d_Y, ui size, float C );
int cusdVFs_divrV( fVector d_Z, fVector d_X, fVector d_Y, ui size, float *d_C );
int cudaVFx_divrV( fVector d_Z, fVector d_X, fVector d_Y, ui size, float A, float B );
int cusdVFx_divrV( fVector d_Z, fVector d_X, fVector d_Y, ui size, float *d_A, float *d_B );
int cudaVCF_divrReV( cfVector d_Z, cfVector d_X, fVector d_Y, ui size );
int cudaVCFx_divrReV( cfVector d_Z, cfVector d_X, fVector d_Y, ui size, fComplex A, fComplex B );
int cusdVCFx_divrReV( cfVector d_Z, cfVector d_X, fVector d_Y, ui size, fComplex *d_A, fComplex *d_B );
void VFcu_divrV( fVector h_Z, fVector h_X, fVector h_Y,ui size );
void VFscu_divrV( fVector h_Z, fVector h_X, fVector h_Y, ui size, float C );
void VFxcu_divrV( fVector h_Z, fVector h_X, fVector h_Y, ui size, float A, float B );
void VCFcu_divrReV( cfVector h_Z, cfVector h_X, fVector h_Y, ui size );
void VCFxcu_divrV( cfVector h_Z, cfVector h_X, cfVector h_Y, ui size, fComplex A, fComplex B );
void VCFxcu_divrReV( cfVector h_Z, cfVector h_X, fVector h_Y, ui size, fComplex A, fComplex B );
CUDA function Pascal/Delphiuses VFmath, VCFmath;
function cudaVF_divrV( d_Z, d_X, d_Y:fVector; size:UIntSize ): IntBool;
function cudaVFs_divrV( d_Z, d_X, d_Y:fVector; size:UIntSize; C:Single ): IntBool;
function cusdVFs_divrV( d_Z, d_X, d_Y:fVector; size:UIntSize; d_C:PSingle ): IntBool;
function cudaVFx_divrV( d_Z, d_X, d_Y:fVector; size:UIntSize; A, B:Single ): IntBool;
function cusdVFx_divrV( d_Z, d_X, d_Y:fVector; size:UIntSize; d_A, d_B:PSingle ): IntBool;
function cudaVCF_divrReV( d_Z, d_X:cfVector; d_Y:fVector; size:UIntSize ): IntBool;
function cudaVCFx_divrReV( d_Z, d_X:cfVector; d_Y:fVector; size:UIntSize; A, B:fComplex ): IntBool;
function cusdVCFx_divrReV( d_Z, d_X:cfVector; d_Y:fVector; size:UIntSize; d_A, d_B:PfComplex ): IntBool;
procedure VFcu_divrV( h_Z, h_X, h_Y:fVector; size:UIntSize );
procedure VFscu_divrV( h_Z, h_X, h_Y:fVector; size:UIntSize; C:Single );
procedure VFxcu_divrV( h_Z, h_X, h_Y:fVector; size:UIntSize; A, B:Single );
procedure VCFcu_divrReV( h_Z, h_X:cfVector; h_Y:fVector; size:UIntSize );
procedure VCFxcu_divrReV( h_Z, h_X:cfVector; h_Y:fVector; size:UIntSize; A, B:fComplex );
Descriptionnormal versions: Zi = Yi / Xi
expanded versions: Zi = Yi / (A*Xi+B)
The complex floating-point versions exist in two variants: in the first variant (e.g., VCF_divrV,   VCFx_divrV), X, Y, and Z are all complex; in the second variant, Y is real-valued (e.g., VCF_divrReV - "division in reverse order: divide a real vector by a complex one").
Error handlingnone
Return valuenone
See alsoVF_divrC,   VF_divrVI,   VF_addV,   VF_mulV,   VF_modV,   VF_visV,   VF_redV

VectorLib Table of Contents  OptiVec home