VF_divrVVD_divrVVE_divrV
VCF_divrVVCD_divrVVCE_divrV
VCF_divrReVVCD_divrReVVCE_divrReV
VFx_divrVVDx_divrVVEx_divrV
VCFx_divrVVCDx_divrVVCEx_divrV
VCFx_divrReVVCDx_divrReVVCEx_divrReV
VPF_divrVVPD_divrVVPE_divrV
VPF_divrReVVPD_divrReVVPE_divrReV
VI_divrVVBI_divrVVSI_divrVVLI_divrVVQI_divrV
VU_divrVVUB_divrVVUS_divrVVUL_divrVVUI_divrV
FunctionDivide two vectors in reverse order
Syntax C/C++#include <VFmath.h>
void VF_divrV( fVector Z, fVector X, fVector Y, ui size );
void VFx_divrV( fVector Z, fVector X, fVector Y, ui size, float A, float B );
void VCF_divrV( cfVector Z, cfVector X, cfVector Y, ui size );
void VCF_divrReV( cfVector Z, cfVector X, fVector Y, ui size );
void VCFx_divrV( cfVector Z, cfVector X, cfVector Y, ui size, fComplex A, fComplex B );
void VCFx_divrReV( cfVector Z, cfVector X, fVector Y, ui size, fComplex A, fComplex B );
C++ VecObj#include <OptiVec.h>
void vector<T>::divrV( const vector<T>& X, const vector<T>& Y );
void vector<T>::x_divrV( const vector<T>& X, const vector<T>& Y, const T& A, const T& B );
void vector<complex<T>>::divrV( const vector<complex<T>>& X, const vector<complex<T>>& Y );
void vector<complex<T>>::divrReV( const vector<complex<T>>& X, const vector<T>& Y );
void vector<complex<T>>::x_divrV( const vector<complex<T>>& X, const vector<complex<T>>& Y, complex<T> A, complex<T> B );
void vector<complex<T>>::x_divrReV( const vector<complex<T>>& X, const vector<T>& Y, complex<T> A, complex<T> B );
Pascal/Delphiuses VFmath;
procedure VF_divrV( Z, X, Y:fVector; size:UIntSize );
procedure VFx_divrV( Z, X, Y:fVector; size:UIntSize; A, B:Single );
procedure VCF_divrV( Z, X, Y:cfVector; size:UIntSize );
procedure VCF_divrReV( Z, X:cfVector; Y:fVector; size:UIntSize );
procedure VCFx_divrV( Z, X, Y:cfVector; size:UIntSize; A, B:fComplex );
procedure VCFx_divrReV( Z, X:cfVector; Y:fVector; size:UIntSize; A, B:fComplex );
Descriptionnormal versions: Zi = Yi / Xi
expanded versions: Zi = Yi / (A*Xi+B)
The complex floating-point versions exist in two variants: in the first variant (e.g., VCF_divrV,   VCFx_divrV), X, Y, and Z are all complex; in the second variant, Y is real-valued (e.g., VCF_divrReV - "division in reverse order: divide a real vector by a complex one").
Error handlingnone
Return valuenone
See alsoVF_divrC,   VF_divrVI,   VF_addV,   VF_mulV,   VF_modV,   VF_visV,   VF_redV

VectorLib Table of Contents  OptiVec home